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A new method is presented that computes a pre–test estimate of the upper
bound of the drag coefficient repeatability of a wind tunnel model. This upper
bound is a conservative estimate of the precision error of the drag coefficient.
For clarity, precision error contributions associated with the measurement of the
dynamic pressure are analyzed separately from those that are associated with
the measurement of the aerodynamic loads. The upper bound is computed by
using information about the model, the tunnel conditions, and the balance in
combination with an estimate of the expected output variations as input. The
model information consists of the reference area and an assumed angle of attack.
The tunnel conditions are described by the Mach number and the total pressure
or unit Reynolds number. The balance inputs are the partial derivatives of the
axial and normal force with respect to all balance outputs. Finally, an empirical
output variation of 1.0 microV/V is used to relate both random instrumentation
and angle measurement errors to the precision error of the drag coefficient.
Results of the analysis are reported by plotting the upper bound of the precision
error versus the tunnel conditions. The analysis shows that the influence of
the dynamic pressure measurement error on the precision error of the drag
coefficient is often small when compared with the influence of errors that are
associated with the load measurements. Consequently, the sensitivities of the
axial and normal force gages of the balance have a significant influence on the
overall magnitude of the drag coefficient’s precision error. Therefore, results
of the error analysis can be used for balance selection purposes as the drag
prediction characteristics of balances of similar size and capacities can objectively
be compared. Data from two wind tunnel models and three balances are used
to illustrate the assessment of the precision error of the drag coefficient.

Nomenclature

a = speed of sound
A = reference area
Aξ = reference parameter used to make an aerodynamic coefficient dimensionless
AF = axial force
AFmax = design capacity of the axial force
b = distance between the forward and aft gages of a force or a moment balance
B1 = square matrix that helps define a load iteration scheme for the Iterative Method
B2 = auxiliary matrix that helps define a load iteration scheme for the Iterative Method
cD = drag coefficient
cL = lift coefficient
c◦, c1, . . . = regression coefficients of a gage output that is fitted as a function of the loads
C1 = square matrix that helps define a load iteration scheme for the Iterative Method
C2 = auxiliary matrix that helps define a load iteration scheme for the Iterative Method
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cξ = aerodynamic force or moment coefficient
d = reference length needed for the calculation of a dimensionless moment coefficient
d◦, d1, . . . = regression coefficients of a load that is fitted as a function of the gage outputs
D = drag force
Fi = load of a strain–gage balance
F = vector of loads that helps define the load iteration scheme for the Iterative Method
g = gravitational acceleration; equals 9.81 [m/sec2] at sea level
H = rectangular matrix that helps define the load iteration scheme for the Iterative Method
i = index of a gage output or load component
j = load iteration step index
l = reference length used to compute the Reynolds number
L = lift force
M = Mach number
Mmax = Mach number limit of wind tunnel model
n = number of gages or number of loads of a strain–gage balance
NF = normal force
NFmax = design capacity of the normal force
N1 = forward normal force of a force balance
N2 = aft normal force of a force balance
p∗ = static pressure in the wind tunnel -or- barometric pressure at an aircraft’s cruising altitude
P = pitching moment
PM = pitching moment at the balance moment center
PM1 = forward pitching moment of a moment balance
PM2 = aft pitching moment of a moment balance
PT = total pressure
PTmax = maximum total pressure that a test article can experience at a given Mach number
Q = dynamic pressure
Qmax = maximum dynamic pressure associated with a wind tunnel model’s structural load limits
R = gas constant; equals 286.9 [(N m)/(kg ◦K)] or 1716 [(ft2)/(sec2 ◦R)] for air
Re = Reynolds number
Re′ = Re/(l × 106); Reynolds number in millions divided by the reference length
Remax = Reynolds number maximum computed as a function of Qmax and M
Re′max = Remax/(l × 106); Reynolds number maximum in millions divided by the reference length
Ri = electrical output of a balance gage or bridge
T = static temperature
V = free–stream velocity
W = weight of a subsonic commercial transport aircraft in cruise condition
W ′ = payload of a subsonic commercial transport aircraft in cruise condition
x, z = Cartesian coordinates that define the wind axis system
x′, z′ = Cartesian coordinates that define the balance axis system

α = angle of attack
α◦ = fixed angle of attack used to define a contour plot of the drag coefficient’s precision error
γ = ratio of the specific heats of a gas; equals 1.4 for air
δAF = small axial force variations associated with output errors and angle of attack variations
δAF ′ = small axial force variations associated with random output measurement errors
δAF ′′ = small axial force variations associated with random angle of attack variations
δcD = estimate of the total precision error of the drag coefficient
δcD|

D=const.
= drag coefficient’s precision error at constant drag

δcD|
Q=const.

= drag coefficient’s precision error at constant dynamic pressure

δc′D = upper bound of the drag coefficient’s precision error in “counts”
δD = small random drag force variations
δNF = small normal force variations associated with output errors and angle of attack variations
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δNF ′ = small normal force variations associated with random output measurement errors
δNF ′′ = small normal force variations associated with random angle of attack variations
δN1 = forward normal force associated with an assumed random electrical output variation
δN2 = aft normal force associated with an assumed random electrical output variation
δPM1 = forward pitching moment associated with an assumed random electrical output variation
δPM2 = aft pitching moment associated with an assumed random electrical output variation
δQ = small random dynamic pressure variations
δα = small angle of attack variations during a wind tunnel test
∆cD = drag coefficient change (increase/decrease) -or- drag coefficient prediction error
∆M = Mach number measurement error
∆R = vector of gage outputs that helps define the load iteration scheme for the Iterative Method
∆W = aircraft weight change -or- aircraft payload gain/loss
∆α = angle measurement error
θ = ratio used to assess the precision error contribution of the normal force
Λ = aspect ratio of an aircraft wing
Λinc. = transformed aspect ratio of an aircraft wing
µ = dynamic viscosity of a gas
ν = summation index
ξ = aerodynamic force or moment
ρ = density
ϕ = empirical upper bound of expected random gage output variations in units of µV/V
ϕinst. = output variations caused by imperfections of the electrical output measurement system
ϕα = output variations caused by small angle of attack variations
ψ = sweepback angle of an aircraft wing
ψinc. = transformed sweepback angle of an aircraft wing

I. Introduction

The precise determination of the drag coefficient plays an important role during performance tests of
wind tunnel models at high subsonic Mach numbers as the impact of small model configuration changes
on the drag coefficient needs to be identified with great confidence. In addition, the “repeatability” of the
drag coefficient, i.e., the difference between drag coefficients of repeat data points, needs to be as small as
possible so that observed performance improvements of a specific test article configuration can “objectively”
be reproduced months or years after they were first implemented. It can be shown, for example, that a one
“count” (0.0001) reduction of the drag coefficient of a subsonic commercial transport aircraft operating in
cruise condition can directly result in a 1 % payload increase (see App. 1 for more details). This significant
improvement may not be detectable if the error of the wind tunnel’s Mach number measurement system
exceeds 0.001 (see App. 2). Therefore, the Mach number measurement system of a production wind tunnel
is often designed such that the Mach number uncertainty is well below 0.001 for most of its operating envelope
(Fig. 1 below shows Mach number uncertainty estimates for the NASA Ames 11–ft Transonic Wind Tunnel as
an example). Similarly, the angle of attack measurement error should be less than 0.02 degrees so that drag
coefficient changes on the order of one “count” can be observed with confidence (concluded from App. 3).
Some wind tunnel operators also like to closely monitor the “repeatability” of the drag coefficient during
wind tunnel tests because it is an indirect indicator of the overall quality of the recorded test data.

In general, the “repeatability” of the drag coefficient can be quantified by the precision (random) error
that is contained in the drag coefficient prediction itself. Several factors influence the magnitude of the
observed precision error of the drag coefficient during a wind tunnel test (e.g., balance design and perfor-
mance, support system motion characteristics, steadiness of the dynamic pressure and angle measurements,
data sampling rates, etc.). Consequently, an effective control of the drag coefficient’s precision error has to
minimize random changes of the most important measurements that contribute to unwanted variations of the
computed drag coefficient. In addition, pre–test estimates of the drag coefficient’s precision error would be
very useful for test planning purposes as they would give wind tunnel customers a better idea (i) which part
of a tunnel’s operating envelope and (ii) what specific combination of strain–gage balance characteristics will
best support their test objectives. Therefore, the authors developed a new method that uses some readily
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available information about the wind tunnel model, the balance, and the wind tunnel’s operating envelope
for a realistic pre–test assessment of the drag coefficient’s precision error.

one	  drag	  count	  limit,	  from	  App.2	  

Fig. 1 Mach number uncertainty of the NASA Ames 11–ft Transonic Wind Tunnel (taken from Ref. [3]).

Details of the proposed assessment of the drag coefficient’s precision error are discussed in the next
section of the paper. Afterwards, results for two wind tunnel test configurations are used to illustrate the
assessment of the drag coefficient’s precision error for models that are tested in a pressurized wind tunnel.

II. Precision Error Assessment

A. Upper Bound of the Precision Error
The derivation of a pre–test estimate of the precision error of the drag coefficient of a wind tunnel model

is discussed in detail in this section. The goal of the precision error analysis is the identification of a realistic
upper bound of the precision error of the drag coefficient that is based on “objective” information about test
article, balance, and tunnel conditions. In other words, only a minimum amount of empirical information
should be used as input for the identification of the upper bound of the drag coefficient’s precision error.

The derivation of an estimate of the upper bound of the drag coefficient’s precision error starts with the
general definition of the drag coefficient. This dimensionless quantity is defined as follows

cD(D,Q) =
D

Q ·A
(1)

where D is the measured aerodynamic drag force on the model, Q is the dynamic pressure, and A is the
model’s reference area (Ref. [1]). The drag coefficient is a function of two independent variables, i.e., of the
drag force D and the dynamic pressure Q, as the model’s reference area A is a constant for a given test
article. Consequently, small changes of the drag coefficient can mathematically be described by its total
differential (Ref. [2]). It is given by the expression

dcD =
∂ cD
∂ D

· dD +
∂ cD
∂ Q

· dQ (2)

where dcD, dD, and dQ represent small changes of related variables. Now, assuming that small “random”
changes of (i) the tunnel conditions, (ii) the model position/orientation in the test section, and (iii) the
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electrical outputs of the balance gages are primarily responsible for the fact that the drag coefficients of two
repeat points differ by a small amount, it is possible to relate them to small changes of the two independent
variables. Then, an upper bound of the drag coefficient’s precision error δcD can be defined by using the
absolute values of the partial derivatives of the drag coefficient in combination with the absolute value of
small changes of both the measured drag force (δD) and the dynamic pressure (δQ). Consequently, we get
the following conservative estimate of the upper bound of the drag coefficient’s precision error:

δcD ≤
∣∣∣∣ ∂ cD∂ D

∣∣∣∣ · |δD| +

∣∣∣∣ ∂ cD∂ Q

∣∣∣∣ · |δQ| (3)

Absolute values of the partial derivatives and the small changes of the independent variables have to
be used in Eq. (3) because the signs of δD and δQ are assumed to be unknown. The two partial derivatives
can easily be computed. We get: ∣∣∣∣ ∂ cD∂ D

∣∣∣∣ =
1

Q ·A
(4a)∣∣∣∣ ∂ cD∂ Q

∣∣∣∣ =

∣∣∣∣ DA · (−1)

Q2

∣∣∣∣ =

∣∣∣∣ D

Q ·A

∣∣∣∣ · 1

Q
= |cD| ·

1

Q
(4b)

Then, after using the right–hand sides of Eqs. (4a) and (4b) to replace the partial derivatives used in
Eq. (3), we get the following upper bound of the drag coefficient’s precision error:

UPPER BOUND OF PRECISION ERROR OF DRAG COEFFICIENT

δcD ≤ δcD|
Q=const.

+ δcD|
D=const.

(5a)

where

balance and/or support system choice =⇒ δcD|
Q=const.

≤ 1

Q ·A
· |δD| (5b)

tunnel condition choice =⇒ δcD|
D=const.

≤ |cD| ·
∣∣∣∣ δQQ

∣∣∣∣ (5c)

The above estimate of the upper bound of the drag coefficient’s precision error clearly identifies the two
major parameter that control the overall magnitude of the drag coefficient’s precision error:

|δD| =⇒ variations of the drag force measurement at constant dynamic pressure

|δQ/Q| =⇒ relative error of the dynamic pressure measurement of the tunnel

The first parameter (|δD|) depends on (i) the balance characteristics and (ii) the angle of attack mea-
surement error on the model. Therefore, for example, the selection of (i) an alternate balance or (ii) a more
rigid model support system can be used to influence the drag coefficient’s precision error. The second param-
eter (|δQ/Q|) depends on the dynamic pressure measurement error at the model location in the test section,
i.e., on the error that is associated with the measurement of the tunnel conditions. It can also be used to
influence the drag coefficient’s precision error as the relative error of the dynamic pressure measurement
often decreases with increasing dynamic pressure. – In the next sections of the paper the drag coefficient’s
precision error at constant drag and at constant dynamic pressure are investigated in more detail.

B. Precision Error at Constant Drag
The drag coefficient’s precision error at constant drag is related to the tunnel condition choice as the

relative error of the dynamic pressure measurement is directly proportional to the drag coefficient’s precision
error at constant drag (see Eq. (5c)). Unfortunately, the determination of the relative error δQ/Q of the
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dynamic pressure of a wind tunnel facility can be complex because it highly depends on the facility’s pressure
& temperature instrumentation hardware setup and the operating envelope of the tunnel. Therefore, the
authors decided to use existing uncertainty analysis results for the NASA Ames 11–ft Transonic Wind Tunnel
(TWT) in order to get a realistic estimate of the precision error at constant drag.

A rigorous uncertainty analysis of the dynamic pressure measurement of the NASA Ames 11–ft TWT
was performed in 2003/2004. Results of this analysis were published in Ref. [3]. Figure 2 below shows an
alternate representation of the uncertainty analysis results for the dynamic pressure that are given in Ref. [3].

one	  drag	  count	  limit,	  from	  Eq.(6)	  

Fig. 2 Relative error estimate of the dynamic pressure of the NASA Ames 11–ft Transonic Wind Tunnel.

In this case, the dimensionless dynamic pressure uncertainty is plotted versus the dynamic pressure itself
as the dimensionless uncertainty value can be interpreted as a conservative estimate of the relative error of
the dynamic pressure measurement. It can be concluded from Fig. 2 that the relative error of the tunnel’s
dynamic pressure measurement is well below 0.001 for most of the tunnel’s operating envelope. In addition,
it is known that the drag coefficient maximum for most wind tunnel models is near 0.1. Therefore, the
following estimate of the upper bound of the drag coefficient’s precision error at constant drag can be made
for the NASA Ames 11–ft TWT:

UPPER BOUND OF PRECISION ERROR AT CONSTANT DRAG

δcD|
D=const.

≤ |cD| · |δQ/Q| ≤ 0.1× 0.001 = 0.0001 ≡ one drag count (6)

The drag coefficient of a typical subsonic commercial transport aircraft operating in cruise condition is
cD ≈ 0.04 (equals a conservative upper limit of estimates that are given in App. 1, Table 6). In addition, it
is concluded from Fig. 2, that the relative error |δQ/Q| of the dynamic pressure measurement for the Ames
11–ft TWT is between 0.0003 and 0.0005 for Mach numbers between 0.8 and 0.9 (see red symbols in Fig. 2).
Consequently, the contribution of the dynamic pressure measurement uncertainty to the drag coefficient’s
precision error is negligible for this assumed cruise condition as it is estimated to be between 1/10 and 1/5
drag count (0.04 × 0.0003 = 0.000012 or 1/10 count ; 0.04 × 0.0005 = 0.000020 or 1/5 count). In the next
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section, the drag coefficient’s precision error at constant dynamic pressure is discussed in more detail.

C. Precision Error at Constant Dynamic Pressure
The authors decided to focus their investigations on the precision error contribution |δD| that is as-

sociated with the drag force measurement itself. This contribution primarily depends on load resolution
characteristics, i.e., on the normal and axial force sensitivities, of the chosen balance. It can be used to
influence the drag coefficient’s precision error as random variations in the drag force measurement can often
be reduced by simply selecting a balance with normal and axial force sensitivities for the test that better
matches a test article’s expected axial and normal force range.

Origins of random variations of the drag force measurement need to be investigated in detail so that the
upper bound of the drag coefficient’s precision error at constant dynamic pressure can be quantified exactly
as defined in Eq. (5b). Therefore, the relationship between the drag force on the test article and the axial
and normal force on the balance needs to be examined. Figure 3a below shows the fundamental connection
between the drag force D acting on the test article in the wind axis system (coordinates x and z) and the
balance loads AF and NF that are measured in the balance axis system (coordinates x′ and z′).

NF 

FREE-STREAM!
VELOCITY!

 !

 !

D 

AF 

Fig. 3a Connection between the drag force and the axial and normal force measurements of a balance.

The drag force measurement is a function of three independent variables: the axial force AF , the normal
force NF , and the angle of attack α of the model. It is described by the following relationship:

D = D(AF,NF, α) = AF · cos α + NF · sin α (7)

The total differential of the drag force is needed so that an estimate of an upper bound of the variation
of the drag force can be obtained. The total differential is given by the following expression:

dD =
∂ D

∂ AF
· dAF +

∂ D

∂ NF
· dNF +

∂ D

∂ α
· dα (8a)

The partial derivatives of the drag force can easily be obtained from Eq. (7). We get:

∂ D

∂ AF
= cos α (8b)

∂ D

∂ NF
= sin α (8c)

∂ D

∂ α
= AF · (−sin α) + NF · cos α (8d)
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Then, after substituting the partial derivatives in Eq. (8a) by the right–hand sides of the above three
equations and after rearranging the result for clarity, we get:

dD = { dAF + dα · NF } · cos α + { dNF − dα · AF } · sin α (8e)

Now, in order to get an inequality for the upper bound of the drag force variation |δD|, four replacements
are made: (i) the differential dD is replaced by the upper bound |δD| of the precision error of the drag force
measurement, (ii) the differential dAF is replaced by the upper bound |δAF ′| of the precision error estimate
of the axial force measurement at constant angle of attack, (iii) the differential dNF is replaced by the
upper bound |δNF ′| of the precision error estimate of the normal force measurement at constant angle of
attack, and (iv) the differential dα is replaced by the upper bound |δα| of the precision error of the angle
measurement. Consequently, after switching the minus to a plus sign in Eq. (8e) so that a “conservative”
estimate is obtained, we get the following upper bound for the absolute value of the drag force variation:

|δD| ≤ { |δAF ′| + |δAF ′′| } · cos |α| + { |δNF ′| + |δNF ′′| } · sin |α| (9a)

where
|δAF ′′| = |δα| · |NF | (9b)

|δNF ′′| = |δα| · |AF | (9c)

It is useful to interpret the right–hand side of Eq. (9a). First, it has to be pointed out that |δAF ′|
and |δNF ′| are “random” force variations at constant angle of attack and at constant dynamic pressure.
Therefore, they are not associated with true “physical” loads that the balance experiences. Instead, they
can only be caused by small output measurement errors that result from imperfections of the entire electrical
measurement system (gages, wires, amplifiers, etc.). This conclusion can be summarized as follows:

|δAF ′| =⇒ axial force variation caused by small random output measurement errors

|δNF ′| =⇒ normal force variation caused by small random output measurement errors

In addition, after reviewing the force diagram shown in Fig. 3b below, it is concluded that the term
|δAF ′′| can be interpreted as a small axial force variation at constant normal force.

NF 

FREE-STREAM!
VELOCITY!

 !

 !

AF 

 !

δ AF’’  =  - δα  NF 

δ NF’’  =  + δα  AF 

Fig. 3b Connection between angle of attack variations and balance load variations.

Similarly, it is concluded that the term |δNF ′′| can be interpreted as a small normal force variation at
constant axial force. Both force variations are associated with true “physical” loads that act on the balance.
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These loads are connected to small “physical” angle of attack changes that occur during “wind–on” runs
in a wind tunnel. These angle of attack changes are primarily caused by (i) small “elastic” model support
system deformations, (ii) vibrational characteristics of the support system and model/balance assembly, and
(iii) imperfections of the facility control system algorithm that sets the requested angle of attack.

The electrical outputs of the balance gages always respond to the sum of |δAF ′| and |δAF ′′| because
“random” output measurement errors and output variations associated with “random” angle of attack vari-
ations exist simultaneously. Similarly, the electrical outputs of the balance gages also always respond to the
sum of |δNF ′| and |δNF ′′|. Therefore, it makes sense for the current study to combine associated force
contributions in single terms. The following definitions can be made:

|δAF | = |δAF ′| + |δAF ′′| (10a)

|δNF | = |δNF ′| + |δNF ′′| (10b)

Then, inequality (9a) can be summarized as follows:

|δD| ≤ |δAF | · cos |α| + |δNF | · sin |α| (11)

Finally, after combining the above inequality with Eq. (5b), we get the following estimate of the upper
bound of the drag coefficient’s precision error at constant dynamic pressure:

UPPER BOUND OF PRECISION ERROR AT CONSTANT DYNAMIC PRESSURE

δcD|
Q=const.

≤ |δAF | · cos |α| + |δNF | · sin |α|
Q ·A

(12)

The numerical evaluation of the right–hand side of Eq. (12) still requires some reasonable estimate of
the precision error of the axial and normal force measurements of the strain–gage balance. An estimate of
this error is derived in the next section of the paper.

D. Precision Error of the Balance Loads
In principle, a reasonable estimate of the precision error of the axial and normal force measurements of

the balance is needed so that the right–hand side of Eq. (12) can numerically be evaluated. This estimate
can be obtained by combining information about the load resolution properties of the selected strain–gage
balance with an empirical estimate of the random variations of the electrical outputs of the gages.

Regression models of balance calibration data are typically used in matrix format in a wind tunnel to
predict both the axial and normal force on the balance from the measured gage outputs. This matrix is
often called the “Data Reduction Matrix” (see, e.g., Ref. [4], p. 19, p. 62). Some matrix coefficients can
be interpreted as least squares approximations of the partial derivatives of a balance load component Fi
with respect to a gage output Rj where Fi equals AF , NF , N1, N2, PM1, or PM2 depending on the
design load format of the strain–gage balance. Therefore, it is possible to define an upper bound of the
“random” variations of the axial and normal force by simply multiplying an empirical upper bound of the
“random” variation of the electrical outputs with the appropriate set of partial derivatives of the balance
load components Fi that are needed for the calculation of the axial and normal force of the balance. This
“random” variation |δFi| of a balance load component can be described as follows:

|δFi| ≈
∣∣∣∣ ∂ Fi∂ R1

∣∣∣∣ · |δR1| + . . . +

∣∣∣∣ ∂ Fi∂ Rn

∣∣∣∣ · |δRn| ≤ |ϕ| ·
n∑
ν=1

∂ Fi
∂ Rν

(13a)

In theory, the observed upper bound |ϕ| of the gage output variations consists of two superimposed
contributions (i.e., |ϕ| = |ϕinst.| + |ϕα|). The first contribution |ϕinst.| is the result of imperfections of the
electrical output measurement system itself. It is associated with the root cause of δAF ′ and δNF ′. This
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contribution results in “virtual” balance load predictions from the regression model of the calibration data
that are not associated with “physical” load changes on the model. The second contribution |ϕα| is the
result of small angle of attack changes δα at constant dynamic pressure. It is related to the root cause of
δAF ′′ and δNF ′′. This contribution results in load predictions from the regression model of the balance
calibration data that are associated with true “physical” load changes on the model. Fortunately, it is
known from observed bare balance outputs of many different balance types that |ϕinst.| is much smaller than
|ϕα|. In other words, |ϕinst.| can be neglected for most wind tunnel test situations. Therefore, the authors
recommend the following value as the empirical upper bound of the “random” variations of the outputs:

UPPER BOUND OF RANDOM OUTPUT VARIATIONS

|ϕ| ≈ |ϕα| ≤ 1.0 [µV/V ] ≡ 0.01 [deg] × ( 1000 [µV/V ] / 10 [deg] ) (13b)

The choice of 1.0 [µV/V ] was experimentally confirmed after reviewing repeat data from (i) wind tunnel
tests at the NASA Ames 11–ft TWT and (ii) strain–gage balance calibrations. The right–hand side of
Eq. (13b) illustrates how the choice of 1.0 [µV/V ] can be interpreted in a practical context if the relationship
between output change and angle of attack change is assumed to be linear. The choice of 1.0 [µV/V ]
essentially corresponds to an angle measurement variation of 0.01 [deg] if the normal/axial force gages have
a maximum output of 1000 [µV/V ] that occurs at an angle of attack of 10 [deg].

The recommended upper bound of 1.0 [µV/V ] should be multiplied by a reasonable upper bound of the
partial derivatives ∂Fi/∂R1, . . . , ∂Fi/∂Rn of the chosen load component Fi that is used to compute either
the axial or normal force on the wind tunnel model. It is possible, for example, to simply use the sum
of the absolute values of the partial derivatives as an upper bound. This choice, however, would be very
“conservative” as it implicitly assumes that the sign of all partial derivatives is the same. Instead, a slightly
smaller but more realistic upper bound may be obtained by using the definition of the length of a vector in
n–dimensional space as the upper bound of the partial derivatives. Then, we get:

UPPER BOUND OF THE PARTIAL DERIVATIVES OF A BALANCE LOAD

S(Fi, R1, . . . , Rn) ≤

√ [
∂ Fi
∂ R1

]2
+ · · · +

[
∂ Fi
∂ Rn

]2
=

√√√√ n∑
ν=1

[
∂ Fi
∂ Rν

]2
(13c)

A typical strain–gage balance uses a single bridge to measure the axial force. Consequently, after
combining Eqs. (13b) and (13c) above, the upper bound of the estimated “random” variations of the axial
force measurement can be expressed as follow:

|δAF | ≈ |ϕ| · S(AF,R1, . . . , Rn) (14a)

Similarly, assuming that the balance load prediction matrix describes load components in “direct–read”
format, the upper bound of the variations of the normal force measurement can be expressed as follows:

|δNF | ≈ |ϕ| · S(NF,R1, . . . , Rn) (14b)

Then, after replacing |δAF | and |δNF | in Eq. (12) by the right–hand sides of Eqs. (14a) and (14b), we
get an alternate description of the upper bound of the precision error at constant dynamic pressure:

UPPER BOUND OF PRECISION ERROR AT CONSTANT DYNAMIC PRESSURE

δcD|
Q=const.

≤ |ϕ| · S(AF,R1, . . . , Rn) · cos|α| + S(NF,R1, . . . , Rn) · sin|α|
Q ·A

(15)
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A balance load prediction matrix may also be supplied using load components that are described in
“force balance” format (see, e.g., Ref. [4] and Ref. [5] for a description of the different balance load formats
that are used in the aerospace testing community). Then, the “random” variation of the normal force is
estimated by using the following inequality

|δNF | ≤ |δN1| + |δN2| ≈ |ϕ| · { S(N1, R1, . . . , Rn) + S(N2, R1, . . . , Rn) } (16a)

where N1 is the forward normal force component and N2 is the aft normal force component of the balance.
Alternatively, a balance load prediction matrix may also be supplied using load components that are expressed
in “moment balance” format. Then, the “random” variation of the normal force is estimated by using the
following inequality

|δNF | ≤ |δPM1| + |δPM2|
b

≈ |ϕ| · S(PM1, R1, . . . , Rn) + S(PM2, R1, . . . , Rn)

b
(16b)

where PM1 is the forward pitching moment, PM2 is the aft pitching moment, and b is the distance between
the forward and aft pitching moment gages. – The numerical evaluation of the right–hand side of Eq. (15)
requires the dynamic pressure itself as input. The calculation of this quantity is briefly reviewed in the next
section of the paper.

E. Dynamic Pressure in Compressible Flow
The dynamic pressure in compressible flow depends on the “tunnel conditions” that are uniquely de-

scribed by the total pressure (PT ) and the Mach number (M). The connection between dynamic pressure
and tunnel conditions is given by the following equation (taken from Ref. [6]):

DYNAMIC PRESSURE IN COMPRESSIBLE FLOW

Q = f(γ, PT ,M) = PT ·
γ

2
· M2 ·

[
1 +

γ − 1

2
· M2

] −γ/(γ − 1)
(17a)

Then, knowing that the ratio γ of specific heats of air equals 1.4, Eq. (17a) can be expressed as follows:

Q = f(PT ,M) = PT ·
7

10
· M2 ·

[
1 +

M2

5

] −7/2
(17b)

At this point, an estimate of the upper bound of the drag coefficient’s precision error at constant dynamic
pressure can be computed as all quantities on the right–hand side of Eq. (15) are defined. The corresponding
result can be visualized as a contour plot. This suggestion is described in more detail in the next section.

III. Contour Plots of Upper Bound

A. General Remarks
An estimate of the upper bound of the drag coefficient’s precision error at constant dynamic pressure

can now be computed as all quantities on the right–hand side of Eq. (15) are known. This precision error
estimate is a function of (i) the given reference area A of the model, (ii) an assumed angle of attack α of the
model, (iii) the upper bound of random output variations |ϕ|, (iv) the partial derivatives ∂Fi/∂Rν of the
axial and normal force of the balance, (v) the total pressure PT , and (vi) the Mach number M . Therefore,
after multiplying Eq. (15) by 104 so that the upper bound of the drag coefficient’s precision error is reported
in “counts”, Eq. (15) can be expressed as follows:

PRECISION ERROR OF THE DRAG COEFFICIENT
AT CONSTANT DYNAMIC PRESSURE IN COUNTS

δc′D = 104 · δcD|
Q=const.

= f1(A,α, ∂Fi/∂Rν ,M, PT ) (18)
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The parameter A is a fixed constant for a given wind tunnel model. Similarly, the partial derivatives
∂Fi/∂Rν are fixed constants for a given strain–gage balance. In addition, the angle of attack α can be set
to a constant value α◦ that a wind tunnel user may specify. Then, the upper bound of the drag coefficient’s
precision error becomes exclusively a function of two variables, i.e., the Mach number and the total pressure.
Consequently, the upper bound of the drag coefficient’s precision error can be displayed as a 2–dimensional
“contour plot” if it is plotted for a family of total pressure and Mach number combinations.

B. Upper Bound versus Mach Number and Total Pressure
In the previous section an upper bound of the drag coefficient’s precision error at constant dynamic

pressure was developed. In this section it will be shown how the upper bound given on the right–hand side
of Eq. (12) can be visualized as a contour plot that uses the Mach number and total pressure of the wind
tunnel as input. This contour plot is defined as follows:

δc′D(α◦) = f1(α◦,M, PT ) (19)

A wind tunnel model may not exceed its structural limit during a wind tunnel test. This limit is often
described by the maximum dynamic pressure Qmax that the model can experience. Therefore, it would be
helpful to also display Qmax in the contour plot defined in Eq. (19). A corresponding relationship involving
Qmax can be obtained from Eq. (17a) after the equation is rearranged such that the total pressure maximum
PT = PTmax is expressed as a function of Qmax and M . Then, we get the following equation:

TOTAL PRESSURE MAXIMUM OF MODEL

PTmax = Qmax ·
2

γ
· 1

M2
·
[

1 +
γ − 1

2
· M2

] γ/(γ − 1)
(20a)

Again, the ratio γ of the specific heats of air equals 1.4. Therefore, we get for air:

PTmax = Qmax ·
10

7
· 1

M2
·
[

1 +
γ − 1

2
· M2

] 7/2
(20b)

Now, after including the total pressure maximum of the model in the contour plot, we get the following
expanded contour plot of the upper bound of the drag coefficient’s precision error (see also sample plots
given in Figs. 6a, 8a, 8b of the paper):

PRECISION ERROR OF THE DRAG COEFFICIENT
VERSUS MACH NUMBER AND TOTAL PRESSURE

Contour P lot No. 1 =⇒ δc′D(α◦) = f1(α◦,M, PT , PTmax) (21)

It is also possible to develop a similar contour plot of the upper bound of the drag coefficient’s precision
error at constant dynamic pressure if the Reynolds number instead of the total pressure is used to describe
the tunnel conditions. This alternate version of the contour plot is described in the next section of the paper.

C. Upper Bound versus Mach Number and Reynolds Number
Some wind tunnel customers prefer to use the unit Reynolds number Re′ expressed in millions per unit

length instead of the total pressure PT for the description of the tunnel conditions. The required relationship
for the unit Reynolds number can easily be derived from the general definition of the Reynolds number. The
Reynolds number is defined by the following relationship (Ref. [6])

Re = ( ρ · V · l ) / µ (22a)
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where ρ is the density, V is the free–stream velocity, l is a reference length, and µ is the dynamic viscosity.
The unit Reynolds number in millions per unit length is obtained after dividing both sides of Eq. (22a) by
the reference length l and 106. We get:

Re′ =
Re

l · 106
=

ρ · V
µ · 106

(22b)

The product of density with the free–stream velocity can be related to the dynamic pressure by using
the following relationship:

Q =
ρ

2
· V 2 =⇒ ρ · V =

2 · Q
V

(23a)

It is also known from the definition of the Mach number that the free–stream velocity can be expressed
as a function of the Mach number and the speed of sound. Then, we get

M =
V

a
=

V√
γ R T

=⇒ V = M ·
√
γ R T (23b)

where γ is the ratio of the specific heats, R is the gas constant, and T is the static temperature in units
of ◦K or ◦R. Most wind tunnels are operated by using air. Its gas constant equals 286.9 [J/(kg ◦K)] or
1716 [ft2/(sec2 ◦R)]. Now, after replacing the denominator on the right–hand side of Eq. (23a) with the
right–hand side of Eq. (23b), the product of density with the free–stream velocity can be written as follows:

ρ · V =
2 · Q

M ·
√
γ R T

(23c)

Finally, after using the right–hand side of Eq. (23c) to replace the numerator of the right–hand side of
Eq. (22b) and knowing from Eq. (17a) that the dynamic pressure Q in compressible flow is a function of the
ratio γ of the specific heats, the total pressure PT , and the Mach number M , the unit Reynolds number Re′

in millions per unit length can be computed by using the following expression:

UNIT REYNOLDS NUMBER IN MILLIONS PER UNIT LENGTH

Re′ =
2 · Q

µ · M ·
√
γ R T · 106

=
2 · f(γ, PT ,M)

µ · M ·
√
γ R T · 106

(24a)

The maximum unit Reynolds number associated with the structural limit of the wind tunnel model can
directly be computed by using Qmax and PTmax instead of Q and PT in Eq. (24a) above. Then, we get:

UNIT REYNOLDS NUMBER MAXIMUM OF MODEL

Re′max =
2 · Qmax

µ · M ·
√
γ R T · 106

=
2 · f(γ, PTmax,M)

µ · M ·
√
γ R T · 106

(24b)

In general, the dynamic viscosity µ of a gas is a function of the static temperature. For example, the
following relationship for the dynamic viscosity of air is given in the literature (see Ref. [7]):

air =⇒ temperatures in ◦K =⇒ µ = 1.458× 10−6 · T 3/2

T + 110.4

[
N sec

m2

]
(25a)

This relationship can be converted from [m, N , ◦K] to [ft, lbf , ◦R] by using the following two unit
conversions (lbf ≡ pound force):

1.458× 10−6
[
N sec m−2 ◦K−0.5

]
≡ 2.270× 10−8

[
lbf sec ft−2 ◦R−0.5

]
13
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110.4 [◦K] ≡ 198.7 [◦R]

Then, an alternate relationship for the dynamic viscosity is given as follows (see also Ref. [6], p. 19):

air =⇒ temperatures in ◦R =⇒ µ = 2.270× 10−8 · T 3/2

T + 198.7

[
lbf sec

ft2

]
(25b)

Finally, assuming that a reasonable value for the static temperature T is selected, the unit Reynolds
number can be used to define a contour plot of the drag coefficient’s precision error. Therefore, we can write
(see also sample plot given in Fig. 6b of the paper):

PRECISION ERROR OF THE DRAG COEFFICIENT VERSUS
MACH NUMBER AND UNIT REYNOLDS NUMBER

Contour P lot No. 2 =⇒ δc′D(α◦) = f2(α◦,M,Re′, Re′max) (26)

Figure 4 below summarizes the most important steps that are described in the paper in order to prepare
contour plots of the upper bound of the drag coefficient’s precision error.

MODEL&INPUTS:&
!"REFERENCE"AREA"
!"ANGLE"OF"ATTACK"
!"MAX."MACH"NUMBER"
!"MAX."DYN."PRESSURE"

BALANCE&INPUTS:&
!"PARTIAL"DERIVATIVES"
!"GAGE"DISTANCE"

TUNNEL&INPUTS:&
!"MACH"NUMBER"
!"TOTAL"PRESSURE"
!"STATIC"TEMPERATURE"

EMPIRICAL&INPUT:&
OUTPUT"VARIATION"
IN"MICROV/V"

DETERMINE&PRECISION&
ERROR&ESTIMATE&OF&
DRAG&COEFFICIENT&

IN&“COUNTS”&
EQ.(15),"EQ.(18)&&

DETERMINE&
TOTAL&PRESSURE&

MAXIMUM&
EQ.(20a)&&

DETERMINE&
UNIT&REYNOLDS&
NUMBER&MAXIMUM&

EQ.(24b)&&

DETERMINE&
DYNAMIC&PRESSURE&

EQ.(17a)&&

DETERMINE&UNIT&
REYNOLDS&NUMBER&

EQ.(24a)&&

GENERATE&
CONTOUR&PLOTS&

EQ.(21),"EQ.(26)&&

END&

START&

Fig. 4 Summary of the calculation of a pre–test estimate of the precision error of the drag coefficient.

The next section discusses the practical calculation of the partial derivatives of the balance load com-
ponents that are needed for the assessment of small variations of the drag force measurement. Afterwards,
two wind tunnel test cases are used to demonstrate the assessment of the drag coefficient’s precision error.
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IV. Identification of Partial Derivatives

It is critical for the calculation of the upper bound of the small variations of the drag force measure-
ment that the partial derivatives of the required balance load components (e.g., axial force, normal force,
forward/aft normal force, forward/aft pitching moment) with respect to the electrical outputs of the bal-
ance gages are known (see Eq. (13c)). Fortunately, least squares estimates of these partial derivatives can
directly be obtained from the coefficient matrices that the Non–Iterative Method or Iterative Method use
for the prediction of balance loads (see, e.g., Ref. [8] for a detailed discussion of these two methods that are
traditionally used in the aerospace testing community to predict balance loads).

The Non–Iterative Method fits the balance loads directly as a function of the measured outputs of the
strain–gages. Therefore, the regression models of the load components have the following general form

Fi = d◦(i)︸ ︷︷ ︸
intercept

+ d1(i) ·R1 + · · · + dn(i) ·Rn︸ ︷︷ ︸
linear terms

+ · · · ; 1 ≤ i ≤ n (27a)

where Fi is the balance load with index i, n is the number of loads or gage outputs of the balance, R1 to Rn
are the independently measured outputs of the balance, and d◦, d1, . . . are the regression coefficients of the
regression model of the load. The regression coefficients of the linear terms of Eq. (27a) are the least squares
approximations of the partial derivatives of the balance load. This observation can be described as follows:

dν(i) ≈ ∂ Fi
∂ Rν

; 1 ≤ ν ≤ n (27b)

The identification of approximations of the partial derivatives of the axial and normal force is also
possible if an analyst uses the Iterative Method for the balance load prediction. This approach first fits the
outputs as a function of the loads. The corresponding regression model of the outputs can be written as

Ri = c◦(i)︸︷︷︸
intercept

+ c1(i) · F1 + c2(i) · F2 + · · · + cn(i) · Fn︸ ︷︷ ︸
linear terms

+ · · · ; 1 ≤ i ≤ n (28a)

where Ri is the measured electrical output of the gage with index i, n is the number of loads or gage outputs
of the balance, F1 to Fn are the loads of the balance, and c◦, c1, . . . are the regression coefficients of the
regression model of the output. Afterwards, a load iteration scheme is constructed from the regression models
of the outputs so that loads can be predicted from outputs during a wind tunnel test. Two load iteration
equation choices, i.e., Load Iteration Method A and Load Iteration Method B, are available if the Iterative
Method is used. They can be summarized by the following two iteration equations:

Load Iteration Method A︸ ︷︷ ︸
described as Method 1 in Ref. [8]

=⇒ Fj =
[
C
−1

1 ∆R
]

︸ ︷︷ ︸
constant

−
[
C
−1

1 C2

]
·Hj−1︸ ︷︷ ︸

changes for each iteration step

(28b)

Load Iteration Method B︸ ︷︷ ︸
described as Method 2 in Ref. [8]

=⇒ Fj =
[
B
−1

1 ∆R
]

︸ ︷︷ ︸
constant

−
[
B
−1

1 B2

]
· Fj−1 −

[
B
−1

1 C2

]
·Hj−1︸ ︷︷ ︸

changes for each iteration step

(28c)

The coefficients in the rows of the two inverse matrices used above (matrix C
−1

1 for Load Iteration

Method A , or, matrix B
−1

1 for Load Iteration Method B ) have the desired approximations of the partial
derivatives of the balance loads. They can directly be taken from the “Data Reduction Matrix” of the
balance (see Ref. [4], p. 19, p. 62 for a definition of this matrix). It is important to mention that, by design,

all off–diagonal coefficients of matrix B
−1

1 are zero. Therefore, the drag coefficient’s precision error estimate

obtained from the coefficients of B
−1

1 will always be less conservative than the alternate estimate obtained

from the coefficients of C
−1

1 . – The magnitude of the precision error contribution associated with the normal
force measurement of the balance is assessed in more detail in the next section of the paper.

V. Precision Error Contribution of the Normal Force

It is interesting to analyze the numerator of the fraction on the right–hand side of Eq. (15) in more detail.
It can be used to quantify the size of the contribution of the normal force measurement of the balance to
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the total precision error of the predicted drag coefficient. The second product of the numerator of Eq. (15)
represents the contribution of the normal force measurement to the precision error. Therefore, the ratio
between this second term and the numerator of Eq. (15) itself can be used to express the contribution of
the normal force measurement to the precision error as a percentage of the total precision error of the drag
coefficient. Then, after simplifying the trigonometric functions of the result, we get the following expression
for the percentage of the normal force contribution to the total precision error of the drag coefficient

θ =
S(NF,R1, . . .) · tan|α|

S(AF,R1, . . .) + S(NF,R1, . . .) · tan|α|
× 100 % (29a)

where the upper bounds S(NF,R1, . . .) and S(AF,R1, . . .) are obtained after replacing Fi in Eq. (13c) by
either NF or AF . The upper bound of the partial derivatives of the normal force can easily be obtained
from coefficients of the related load prediction matrix if the loads are given in direct–read format. Alternate
definitions have to be used if loads and the associated load prediction matrix are given in either force or
moment balance format. Then, the following upper bounds should be used (see also Eqs. (16a) and (16b)):

force balance format =⇒ S(NF,R1, . . .) ≈ S(N1, R1, . . .) + S(N2, R1, . . .) (29b)

moment balance format =⇒ S(NF,R1, . . .) ≈
[
S(PM1, R1, . . .) + S(PM2, R1, . . .)

]
/ b (29c)

The percentage θ can easily be evaluated for a strain–gage balance if (i) calibration analysis results are
available and (ii) a reasonable family of angle of attack values is selected. Data from NASA’s ARC30K 5–
component semi–span balance can be used to illustrate the calculation of the percentage θ because results of
the calibration analysis for the Iterative Method were available (see Ref. [8] for a description of the Iterative
Method ). Table 1 below lists all sensitivity estimates of gage set 1 that were obtained from Triumph
Aerospace’s 2013 calibration of the balance.

Table 1: [∂Ri/∂Fj ] ≡ sensitivities of the ARC30K semi–span balance.†

R1 = rNF R2 = rAF R3 = rPM R4 = rYM R5 = rRM

F1 = NF +0.040407 −0.000473 +0.000043 +0.000000 +0.001497

F2 = AF −0.000076 +0.396865 −0.000206 +0.002971 +0.000072

F3 = PM +0.000112 −0.000007 +0.005493 −0.000018 −0.000010

F4 = YM +0.000010 −0.000016 +0.000008 +0.002043 −0.000001

F5 = RM +0.000029 −0.000002 −0.000003 +0.000004 +0.001057

†The sensitivities are the coefficients of matrix C1; unit ≡ (µV/V )/lbf or (µV/V )/(in-lbf).

The sensitivities reported in Table 1 above are the coefficients of matrix C1 that results from the least
squares fit of the five primary bridge outputs of the ARC30K balance. The partial derivatives ∂Fi/∂Rj
required for the calculation of S(NF,R1, . . .) and S(AF,R1, . . .) in Eq. (29a) can immediately be obtained
by computing the inverse of matrix C1. Then, we get:

Table 2: [∂Fi/∂Rj ] ≡ partial derivatives of the loads of the ARC30K semi–span balance.†

R1 = rNF R2 = rAF R3 = rPM R4 = rYM R5 = rRM

F1 = NF +24.77376 +0.005544 −0.505730 −0.123317 −0.671750

F2 = AF +0.029365 +2.519616 +0.002770 +0.018963 +0.002795

F3 = PM −0.213838 +0.099419 +182.0430 −0.684369 +0.594870

F4 = YM +0.018637 −3.663806 +1.593760 +489.5466 −1.705461

F5 = RM −35.08594 −0.182163 +2.491116 +0.533006 +946.9652

†The partial derivatives are the coefficients of matrix C
−1

1 ; unit ≡ lbf/(µV/V ) or (in-lbf)/(µV/V ).
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Now, all information needed for the calculation of the percentage θ is available. First, the upper bounds
of the partial derivatives of the normal and axial force of the balance are computed by using the definition
that is given in Eq. (13c). The following results can be obtained by using the contents of Table 2:

S(NF,R1, . . . , R5) =

√√√√ 5∑
ν=1

[
∂ NF

∂ Rν

]2
≈ 25 lbf/(µV/V ) (29d)

S(AF,R1, . . . , R5) =

√√√√ 5∑
ν=1

[
∂ AF

∂ Rν

]2
≈ 2.5 lbf/(µV/V ) (29e)

Finally, a family of angles of attack is chosen and so that the normal force contribution percentage
defined in Eq. (29a) can be computed. We get the following results:

Table 3: Normal force contribution to the total precision error of the drag coefficient.

α = 0◦ α = 2◦ α = 4◦ α = 6◦ α = 8◦ α = 10◦

θ 0 % 26 % 41 % 51 % 58 % 64 %

It can be concluded from Table 3 that the contribution of the normal force to the total precision error
of the drag coefficient must not be underestimated if the primary sensitivities of the normal and axial force
gages differ by one order of magnitude. This situation applies to the ARC30K balance because we know
from Table 1 that the primary sensitivity ∂(rNF )/∂(NF ) of the normal force gage equals about 1/10 of
the primary sensitivity ∂(rAF )/∂(AF ) of the axial force gage. In that case, the contribution of the normal
force to the total precision error of the drag coefficient will be 51%, i.e., it exceeds the contribution of the
axial force, if the angle of attack is near 6 degrees. By design, most balances used for both performance and
stability & control tests of a traditional aircraft have axial and normal force sensitivities that differ by one
order of magnitude. Therefore, an increase of the normal force sensitivity requirement for a new balance
design can significantly decrease the precision error of the drag coefficient. Such a sensitivity increase could
be achieved by specifically designing and fabricating a balance with reduced normal force capacity for the
performance portion of the wind tunnel test. – Results of the application of the pre–test assessment of the
drag coefficient’s precision error to two wind tunnel test situations are presented in the next section.

VI. Discussion of Example
Two examples are discussed in this section in order to illustrate results of the assessment of the drag

coefficient’s precision error for typical wind tunnel test situations. The first example consist of the HATOL
model that was tested in 2015 in the NASA Ames 11–ft TWT (the model is shown in Fig. 5 below).

Fig. 5 HATOL model installed in the test section of the NASA Ames 11–ft Transonic
Wind Tunnel (photo courtesy of Don Durston, NASA Ames Research Center).
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The HATOL model is a low aspect ratio generic supersonic fighter model. Loads were measured during
the test by using the 2.0 inch MK29A six–component force balance. It was decided to estimate the drag
coefficient’s precision error for this test situation by assuming that the model’s angle of attack α◦ is fixed
at zero degrees. Then, Eq. (15) was used to compute the precision error of the drag coefficient at constant
dynamic pressure. Figure 6a shows the drag coefficient’s precision error in “counts” plotted as a function of
the Mach number and total pressure.

20

10 5

1

2

Qmax

Fig. 6a Precision error of the drag coefficient at constant dynamic pressure plotted in “counts” versus

Mach number & total pressure (HATOL, MK29A, A = 4.5 ft2, α◦ = 0◦, Qmax = 1400 psf).

Similarly, Fig. 6b shows the drag coefficient’s precision error in “counts” plotted as a function of the
Mach number and unit Reynolds number.

10
5

1

2

Qmax

Fig. 6b Precision error of the drag coefficient at constant dynamic pressure plotted in “counts” versus

Mach number & Reynolds number (HATOL, MK29A, A = 4.5 ft2, α◦ = 0◦, Qmax = 1400 psf).

Both plots clearly highlight the fact that smaller precision errors can be achieved at higher Mach numbers
and total pressures. – The second example assesses the drag coefficient’s precision error of the UHB semi–
span model assuming it is used in combination with either NASA’s MC400 or ARC30K semi–span balance
for a test in the NASA Ames 11–ft TWT. The UHB model is a generic high aspect ratio subsonic commercial
transport type wind tunnel model (see Fig. 7a below).
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Fig. 7a UHB model installed in the test section of the NASA Ames 11–ft Transonic Wind Tunnel

(photo courtesy of the Wind Tunnel Operations Division, NASA Ames Research Center).

The two balances are shown in Fig. 7b below. The MC400 balance was originally designed for the NASA
Ames 12–ft Pressure Wind Tunnel. This wind tunnel had a maximum total pressure of 6 atm. The Ames
11–ft TWT, on the other hand, has a maximum total pressure of 2 atm. Therefore, the capacities of

Large&
Load&
Rig&

MC400&
(metric&end)&

37.0%in%
(940%mm)%

15.0%in%
(381%mm)%

METRIC'

TEST'
SECTION'
FLOOR'

MC400	   ARC30K	  

Fig. 7b NASA’s MC400 and ARC30K high capacity 5–component semi–span balances.

the MC400 are much larger than the expected loads for a typical semi–span model that is tested in the
Ames 11–ft TWT. In other words, the MC400 is not ideally sized for semi–span model tests in the 11–ft
TWT. The ARC30K balance, of the other hand, was specifically designed for use in the Ames 11–ft TWT.
Consequently, it has lower capacities and higher sensitivities when compared with the MC400 (see Table 4).

Table 4: Normal and axial force capacities and sensitivities of two NASA semi–span balances.

NFmax AFmax ∂(rNF )/∂(NF ) ∂(rAF )/∂(AF )

MC400 40, 000 [lbf ] 8, 000 [lbf ] 0.0223 [(µV/V )/lbf ] 0.0795 [(µV/V )/lbf ]

ARC30K 30, 000 [lbf ] 3, 000 [lbf ] 0.0404 [(µV/V )/lbf ] 0.3969 [(µV/V )/lbf ]

Again, it was decided to estimate the drag coefficient’s precision error for the given wind tunnel test
situation by assuming that the model’s angle of attack α◦ is fixed at zero degrees. Then, Eq. (15) was used
to compute the precision error at constant dynamic pressure. Figure 8a below depicts the drag coefficient’s
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precision error estimate in “counts” plotted as a function of the Mach number and total pressure if the
MC400 balance would be selected for the wind tunnel test.
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Fig. 8a MC400 =⇒ Precision error of the drag coefficient at constant dynamic pressure plotted in “counts”

versus the Mach number & total pressure (UHB, A = 10.1 ft2, α◦ = 0◦, Qmax = 1000 psf).

The hash marks shown in Fig. 8a identify the boundaries of the test envelope of the model. The bound-
aries are defined by the tunnel limit, and, the dynamic pressure & Mach number limits (i.e., Qmax and Mmax)
of the model itself. The contour plot also confirms that the overall precision error of the drag coefficient
can be reduced if tests are conducted at higher Mach numbers and total pressures. Figure 8b shows the

2

4
10

20
50

Mmax

Qmax

TUNNEL
LIMIT

TUNNEL
LIMIT

Fig. 8b ARC30K =⇒ Precision error of the drag coefficient at constant dynamic pressure plotted in “counts”

versus the Mach number & total pressure (UHB, A = 10.1 ft2, α◦ = 0◦, Qmax = 1000 psf).

precision error of the drag coefficient for the ARC30K balance. Significantly lower precision errors can be
expected for the ARC30K balance because it has substantially higher normal and axial force sensitivities
when compared with the MC400. The ARC30K balance is clearly the better choice for the wind tunnel test.

VII. Summary and Conclusions

A new method was presented that computes a realistic pre–test estimate of the upper bound of the
precision error of a wind tunnel model’s drag coefficient. The calculation of the upper bound only requires
some basic information about the model, the balance, the tunnel conditions, and an “empirical” limit of the
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expected gage output variations as input. Results of the precision error assessment are reported in contour
plots that depict the precision error for a fixed angle of attack as a function of the Mach number and total
pressure (or unit Reynolds number). Data from two wind tunnel models and three balances were used to
illustrate the calculation of the upper bound of the drag coefficient’s precision error.

Precision error contributions at constant dynamic pressure and at constant drag were investigated in-
dependently. The chosen approach made it possible to clearly separate the influence of errors associated
with the measurement of the aerodynamic loads (i.e., with the measurement of balance loads and angle of
attack) from errors associated with the measurement of the tunnel conditions (i.e., with the measurement
of the dynamic pressure). This basic idea can also be used to obtain pre–test precision error estimates for
other aerodynamic coefficients like, e.g., the lift coefficient or the pitching moment coefficient, because their
definitions and total differentials all follow the same basic pattern (see App. 4 for more details).

The rigorous analysis of the drag coefficient’s precision error clearly shows that the precision er-
ror contribution associated with the measurement of the aerodynamic loads (i.e., the precision error at
constant dynamic pressure) is often one order of magnitude larger than the precision error contribution as-
sociated with the measurement of the tunnel conditions (i.e., the precision error at constant drag). Therefore,
a first conclusion can be drawn that is valid for most wind tunnel test situations:

CONCLUSION 1
The contribution of balance load & angle of attack measurements to the total precision error of the
drag coefficient is substantially larger than the contribution of the dynamic pressure measurement.

Furthermore, knowing from Eq. (15) that the precision error of the drag coefficient at
constant dynamic pressure is directly proportional to the inverse of the dynamic pressure, the following
second conclusion can be drawn:

CONCLUSION 2
The drag coefficient’s precision error reaches its minimum for a given test configuration and angle
of attack if the model is tested at the maximum dynamic pressure that its structural load limit permits.

In addition, it was shown in the paper that the sensitivities of the normal and axial force gages of the
balance dictate the overall magnitude of the precision error of the drag coefficient as the error contribution
associated with the angle of attack measurement is “hidden” in the electrical output variations of the normal
and axial force gages. Consequently, a third conclusion can be drawn:

CONCLUSION 3
The larger the sensitivities of the normal and axial force gages of the balance
are, the smaller the precision error of the predicted drag coefficient will be.

The investigations also demonstrated that the normal force sensitivity of a balance can have a sur-
prisingly strong influence on the overall magnitude of the drag coefficient’s precision error. A typical bal-
ance chosen for tests of commercial transport type aircraft is often sized such that it can be used during
both the performance and stability & control portion of the planned wind tunnel test. This balance de-
sign characteristic, however, directly translates into a normal force sensitivity of the balance that is about
one order of magnitude lower than its axial force sensitivity. In that case, two balance force measurements
of substantially different resolution are combined when the drag coefficient is computed. Consequently, as-
suming that the wind tunnel model is tested in the neighborhood of its cruise angle of attack (i.e., between
3 and 5 degrees), the contribution of the normal force measurement to the total precision error of the drag
coefficient can equal or even exceed the contribution of the axial force measurement. Therefore, the ratio
between the axial and normal force sensitivities of the balance should be as close as possible to the “ideal”
value of one if the precision error of the predicted drag coefficient is to be minimized.
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In principle, two modifications of the wind tunnel test configuration can be made if a wind tunnel user
wants to minimize the unwanted contribution of the normal force measurement to the total precision error of
the drag coefficient. Modification 1: A dedicated “reduced–capacity” balance is designed for the performance
portion of the wind tunnel test that has a higher normal force sensitivity. The authors recommend to use
50 % of the normal force capacity needed for the stability & control portion of the wind tunnel test as a
realistic design goal for the dedicated “reduced–capacity” balance. Modification 2: The wind tunnel model
is designed such that an existing balance can be installed in the model at an inclination angle relative to
the model’s centerline that equals the negative of the expected cruise angle of attack of the model. Then,
the influence of the normal force measurement on the total precision error of the drag coefficient reaches a
minimum when the model is tested in the neighborhood of its cruise angle of attack. The suggested two
modifications would, of course, increase the overall cost and/or complexity of the wind tunnel test. However,
they may have to be made if a wind tunnel user requires a very low precision error of the drag coefficient
(e.g., 1/2 drag count or less) to objectively identify benefits of a model configuration change.
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Appendix 1: Aircraft Payload and Aerodynamic Drag

In general, the owner/operator of a subsonic commercial transport aircraft is interested in maximizing
the aircraft’s payload or range when operated in cruise condition. Consequently, the primary goal of the
performance test of a subsonic commercial transport aircraft in a wind tunnel is often the minimization
of the aerodynamic drag in cruise condition as a drag reduction will directly result in an increase of the
aircraft’s payload or range as long as the estimated structural weight of the airframe remains unchanged.

A better understanding of the required “precision” of the drag prediction during performance tests of a
subsonic commercial transport aircraft can be obtained if the connection between the aircraft’s payload and
the drag coefficient is quantified. The derivation of such a relationship starts with the definition of the drag
coefficient. It is defined by the following relationship

cD = D / (Q ·A) (30)

where D is the aerodynamic drag force, Q is the dynamic pressure, and A is the aircraft’s reference area. It
is also known from the literature that the lift–to–drag ratio L/D of a subsonic commercial transport aircraft
operated in cruise condition is between 17 and 19 (see Ref. [11]). Therefore, the following approximate value
of the lift–to–drag ratio can be introduced for a typical subsonic commercial transport aircraft:

L/D ≈ 18 (31)

Then, after solving the above equation for the drag force, we get the following relationship:

D ≈ L/18 (32)

It is also known that the forces on an aircraft in cruise condition are in equilibrium. Therefore, the
magnitude of the lift must equal the weight of the aircraft. Consequently, we get the following relationship:

L = W (33)

Now, after replacing the lift by the weight in Eq. (32), we get the following relationship for the drag
force in cruise condition:

D ≈ W/18 (34)

In the next step, the drag force on the right–hand side of Eq. (30) is replaced by the right–hand side of
Eq. (34). Then, we get:

cD ≈ W / (18 ·Q ·A) (35)

Now, after rearranging Eq. (35), the aircraft’s weight can be approximated by the following expression:

W ≈ 18 · Q · A · cD (36)

It is useful for the current investigation to have an approximate relationship between aircraft weight
change and drag coefficient change. This relationship can be obtained by computing the first derivative of
the total weight with respect to the drag coefficient. Then, we get:

∆W ≈ ∂ W

∂ cD
· ∆cD (37)

The partial derivative of the total weight with respect to the drag coefficient is obtained from Eq. (36).
We get the following relationship:

∂ W

∂ cD
≈ 18 · Q · A (38)

Then, after using the right–hand side of Eq. (38) in order to replace the partial derivative on the
right–hand side of Eq. (37), we get for the aircraft weight change the following expression:

∆W ≈ 18 · Q · A · ∆cD (39)
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The payload of the aircraft still needs to be introduced in Eq. (39) so that a connection between drag
coefficient change and the payload change can be established. Data of existing subsonic commercial transport
aircraft may be used in order to express the payload (W ′) as a multiple of the total weight (W ) of the aircraft
at take–off. The total weight at take–off is selected for the current investigations because (i) it can easily be
obtained for different subsonic commercial transport aircraft from the literature and (ii) the initial weight at
cruise condition is close to the total weight at take–off. Table 5 below lists total take–off weight and payload
data for three existing aircraft designs.

Table 5: Weight and payload estimates for existing aircraft (g = 9.81 [m/sec2]).

Aircraft Make/Model W/g W ′/g W/W ′

Boeing B747-400F† 396,895 [kg] ≡ 875,000 [lbs] 113,000 [kg] ≡ 249,125 [lbs] 3.51

Boeing MD11F‡ 273,314 [kg] ≡ 602,555 [lbs] 90,787 [kg] ≡ 200,151 [lbs] 3.01

Airbus A380F† 590,000 [kg] ≡ 1,300,720 [lbs] 150,000 [kg] ≡ 330,700 [lbs] 3.93

†weight & payload taken from Ref. [9] ; ‡weight & payload taken from Ref. [10] ; lbs ≡ pound mass

Data given in Table 5 indicates that the ratio between take–off weight and payload of a subsonic
commercial transport aircraft is between 3.01 and 3.93. It is sufficient for the current investigation to use
an approximate average value of the ratios listed in Table 5. Then, we get the following estimate:

W

W ′
≈ 3.5 (40)

Then, after solving Eq. (40) for the aircraft’s payload, we get the following relationship:

W ′ ≈ W

3.5
(41)

In the next step, after replacing the aircraft weight in Eq. (41) by the right–hand side of Eq. (36), we
get the following relationship between the payload and the drag coefficient in cruise condition:

W ′ ≈ 18 · Q · A · cD
3.5

(42)

Finally, the desired relationship between payload change and drag coefficient change can be obtained
after dividing both sides of Eq. (39) by both sides of Eq. (42). Then, after further simplifying the result, we
get the following relationship:

RELATIONSHIP BETWEEN PAYLOAD AND DRAG COEFFICIENT CHANGE

∆W

W ′
≈ 3.5

cD
· ∆cD (43)

The right–hand side of Eq. (43) can be interpreted as the aircraft’s weight change per unit payload that
is associated with a given drag coefficient change. A realistic estimate for the right–hand side of Eq. (43)
can immediately be obtained if a reasonable estimate of the drag coefficient cD in cruise condition is made.
This estimate can be computed by applying Eq. (35). The take–off weight W and wing reference area A
for different subsonic commercial transport aircraft can easily be obtained from the literature (see Table 6
below). An estimate of the dynamic pressure in cruise condition is also needed. In general, the dynamic
pressure in compressible flow is given by the following equation

Q =
γ

2
· p∗ ·M2 (44a)
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where the ratio γ of the specific heats of air equals 1.4. In addition, assuming that the cruising altitude is
10,000 [m] or 32,808 [ft], we get the following static pressure from Ref. [1]:

p∗ = 26,496 [Pa] ≡ 3.8429 [psi] (44b)

It is also assumed that the cruising Mach number is 0.85. Then, we get the following value for the
dynamic pressure in cruise condition:

Q =
1.4

2
· 26,496 · 0.852 = 13,400 [Pa] ≡ 1.9435 [psi] (44c)

Table 6 below lists take–off weights, reference areas, and cruise drag coefficient estimates that were
computed for the chosen cruise conditions.

Table 6: Cruise drag coefficient estimate for existing aircraft (g = 9.81 [m/sec2]).

Aircraft Make/Model W/g W A Eq. (35) =⇒ cD

Boeing B747-400F† 396,895 [kg] 3,893,540 [N ] 541 [m2] 0.0298

Boeing MD11F‡ 273,314 [kg] 2,681,210 [N ] 339 [m2] 0.0328

Airbus A380F† 590,000 [kg] 5,787,900 [N ] 845 [m2] 0.0284

†weight & area taken from Ref. [9] ; ‡weight & area taken from Ref. [10]

It is sufficient for the current investigation to use the average of the predicted drag coefficients of the
three aircraft listed in Table 6 because the value is only used to estimate the overall magnitude of the
influence of a drag coefficient change on the aircraft’s payload. We get the following arithmetic mean of the
drag coefficients:

cD ≈ 0.0303 (45)

Finally, a drag coefficient change needs to be selected. The following choice is made:

∆cD = 0.0001 ≡ one drag count (46)

At this point, a numerical value of the expected payload change can be obtained as all quantities on the
right–hand side of Eq. (43) are known. We get the following value:

∆W

W ′
≈ 3.5

0.0303
· 0.0001 ≈ 0.0116 ≈ 1 % payload (47)

The numerical result given in Eq. (47) can be summarized by the following statement if it is assumed
that drag coefficient measurements during the wind tunnel test of a subsonic commercial transport aircraft
in cruise condition can objectively detect a drag coefficient reduction of one count:

A drag coefficient reduction of 1 count translates into about a 1 % payload increase
for a typical subsonic commercial transport aircraft that operates in cruise condition.
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Appendix 2: Drag Prediction Precision and Mach Number Measurement

In Appendix 1 is was rigorously shown that an objectively observed drag coefficient change of one
count, i.e., ∆cD = 0.0001, during the wind tunnel test of a subsonic commercial transport aircraft in cruise
condition can have a noticeable impact on the prediction of the aircraft’s payload. Therefore, the influence
of different wind tunnel measurements on the drag coefficient calculation has to be well understood so that
the drag coefficient prediction error can be kept near one count whenever possible.

The precision of the Mach number measurement during a wind tunnel test is one input that influences
the total drag coefficient prediction error. Therefore, it is useful to develop a relationship that directly relates
an assumed small Mach number change to a resulting small drag coefficient change because this relationship
can be used to relate a known Mach number uncertainty to a resulting drag coefficient prediction uncertainty.
The derivation of such a relationship starts with the definition of the drag coefficient. It is defined as follows

cD = D / (Q ·A) (48)

where D is the aerodynamic drag force, Q is the dynamic pressure, and A is the aircraft’s reference area.
The lift–to–drag ratio L/D of a subsonic commercial transport aircraft in cruise condition is between 17 and
19 (see Ref. [11]). Therefore, the following approximate value of the lift–to–drag ratio can be introduced:

L/D ≈ 18 (49)

Now, after solving the above equation for the drag force, we get the following relationship:

D ≈ L/18 (50)

It is also known that the forces on an aircraft in cruise condition are in equilibrium. Therefore, the
magnitude of the lift must equal the weight of the aircraft. Consequently, we get the following relationship:

L = W (51)

Now, after replacing the lift by the weight in Eq. (50), we get the following relationship for the drag
force in cruise condition:

D ≈ W/18 (52)

In the next step, the Mach number needs to be introduced in Eq. (48). The Mach number is an
independent variable of the dynamic pressure in compressible flow. The corresponding relationship for the
dynamic pressure can be written as follows

Q =
γ

2
· p∗ ·M2 (53)

where p∗ is the static pressure in the flow and M is the free–stream Mach number. Now, after using (i) the
right–hand side of Eq. (52) to replace the drag force in Eq. (48), and, (ii) the right–hand side of Eq. (53) to
replace the dynamic pressure in Eq. (48), the drag coefficient in cruise condition becomes:

cD ≈ 2 · W
18 · γ · p∗ · A

· M−2 (54)

The partial derivative of the drag coefficient with respect to the Mach number can easily be obtained
from Eq. (54). We get the following result:

∂ cD
∂ M

≈ 2 · W
18 · γ · p∗ · A

· (−2) · M−3 (55)

It is convenient to use the absolute value of the partial derivative of the drag coefficient for the investi-
gation of the relationship between the Mach number measurement error and the drag coefficient prediction
error. Then, after computing the absolute value of both sides of Eq. (55), we get the following result:∣∣∣∣ ∂ cD∂ M

∣∣∣∣ ≈ 4 · W
18 · γ · p∗ · A

· M−3 (56)
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Now, the relationship between the Mach number measurement error and the drag coefficient prediction
error can be established. We get the following approximation:

RELATIONSHIP BETWEEN DRAG COEFFICIENT AND MACH NUMBER ERROR

∆cD ≈
∣∣∣∣ ∂ cD∂ M

∣∣∣∣ · ∆M (57)

An estimate of the drag coefficient prediction error as a function of an assumed Mach number measure-
ment error can be obtained if a realistic estimate of |∂cD/∂M | for a subsonic commercial transport aircraft
in cruise condition is made. Again, similar to the approach taken in App. 1, it is assumed that (i) the ratio of
the specific heats of air is γ = 1.4, (ii) the cruise altitude is h = 10, 000 [m] and, (iii) the cruise Mach number
equals M = 0.85. In addition, we know from Ref. [1] that the barometric pressure at 10, 000 [m] equals
p∗ = 26, 496 [Pa]. The total weight (W ) and reference area (A) of typical subsonic commercial transport
aircraft are given in Table 7 below. Therefore, all inputs on the right–hand side of Eq. (56) are known and
the values of |∂cD/∂M | can be computed. Results of this calculation are listed in the last column of Table 7.

Table 7: Partial derivative of cruise drag coefficient for existing aircraft (g = 9.81 [m/sec2]).

Aircraft Make/Model W/g W A Eq. (56) =⇒
∣∣∣∣∂cD∂M

∣∣∣∣
Boeing B747-400F† 396,895 [kg] 3,893,540 [N ] 541 [m2] 0.070

Boeing MD11F‡ 273,314 [kg] 2,681,210 [N ] 339 [m2] 0.077

Airbus A380F† 590,000 [kg] 5,787,900 [N ] 845 [m2] 0.067

†weight & area taken from Ref. [9] ; ‡weight & area taken from Ref. [10]

It is sufficient for the current investigation to use the arithmetric mean of the predicted values of
|∂cD/∂M | of the three aircraft listed in Table 7 because the value is only used to estimate the overall
magnitude of the influence of an assumed Mach number measurement error on the drag coefficient prediction
error. We get the following arithmetic mean of the partial derivative of the drag coefficient:∣∣∣∣ ∂ cD∂ M

∣∣∣∣ ≈ 0.071 (58)

Finally, a Mach number measurement error needs to be selected. The following choice is made:

∆M = ±0.001 (59)

Then, after using the values on the right–hand sides of Eqs. (58) and (59) on the right–hand side of
Eq. (57), we get the following result:

∆cD ≈ 0.071 · ±0.001 = ±0.000071 ≈ ±0.0001 ≡ ± one drag count (60)

The numerical result given in Eq. (60) can be summarized by the following statement:

A Mach number measurement error of ≈ 0.001 results in a drag coefficient prediction error
of ≈ 1 count for a subsonic commercial transport aircraft that operates in cruise condition.
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Appendix 3: Drag Prediction Precision and Angle of Attack Measurement

In Appendix 1 is was rigorously shown that an objectively observed drag coefficient change of one
count, i.e., ∆cD = 0.0001, during the wind tunnel test of a subsonic commercial transport aircraft in cruise
condition can have a noticeable impact on the prediction of the aircraft’s payload. Therefore, the influence
of different wind tunnel measurements on the drag coefficient calculation has to be well understood so that
the total drag coefficient prediction error can be kept at or below one count.

The precision of the angle of attack measurement during a wind tunnel test is one input that influences
the total drag coefficient prediction error. Therefore, it is useful to develop a relationship that directly
relates an assumed small angle measurement change to a resulting small drag coefficient change because this
relationship can be used to relate a known angle measurement error to a resulting drag coefficient prediction
error. The derivation of such a relationship starts with the definition of the drag coefficient. It is defined as
follows

cD = D / (Q ·A) (61)

where D is the aerodynamic drag force, Q is the dynamic pressure, and A is the aircraft’s reference area.
The lift–to–drag ratio L/D of a subsonic commercial transport aircraft in cruise condition is between 17 and
19 (see Ref. [11]). Therefore, the following approximate value of the lift–to–drag ratio can be introduced:

L/D ≈ 18 (62)

Now, after solving the above equation for the drag force, we get the following relationship:

D ≈ L/18 (63)

In the next step, after using the right–hand side of Eq. (63) to replace the drag force in Eq. (61), we
get the following approximation of the drag coefficient in cruise condition:

cD ≈ 1

18
· L

Q ·A
(64)

The last fraction on the right–hand side of Eq. (64) equals the lift coefficient in cruise condition. There-
fore, it is possible to simplify Eq. (64). We get the following relationship:

cD ≈ 1

18
· cL (65)

It is possible to approximate the lift coefficient by using the lift slope and the angle of attack. The
corresponding approximation has the following form:

cL ≈ d cL
d α

· α (66)

Then, after using the right–hand side of Eq. (66) to replace the lift coefficient in Eq. (65), we get the
following equation:

cD ≈ 1

18
· d cL

d α
· α (67)

The lift slope in cruise condition can be viewed as a constant as the angle of attack is somewhere between
3◦ and 5◦. Therefore, we get the following approximation:

cruise condition =⇒ d cL
d α

≈ const. (68)

Consequently, the derivative of the drag coefficient in cruise condition with respect to the angle of attack
can be computed to be:

d cD
d α

≈ 1

18
· d cL

d α
(69)
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Finally, the relationship between angle measurement error and drag coefficient error can be defined by
using the derivative of the drag coefficient with respect to the angle of attack. We get the following result:

ANGLE MEASUREMENT ERROR AND DRAG COEFFICIENT ERROR

∆cD ≈ d cD
d α

· ∆α ≈ 1

18
· d cL

d α
· ∆α (70)

A realistic estimate of the lift slope for a typical subsonic commercial transport aircraft is needed so that
the impact of an angle measurement error on the drag coefficient can be quantified. Known values of the
aspect ratio (Λ) and sweepback angle (ψ) of the wing of a commercial transport aircraft may be combined
with an assumed cruise Mach number and the subsonic similarity rules in order to get an estimate of the lift
slope. Table 8 below explains different steps that are required for the calculation of the lift slope.

Table 8: Calculation of the lift slope dcL/dα using the subsonic similarity rules.

Step Transformation Equation (inc. ≡ incompressible value) from Ref. [1] . . . Eq.

1 Λinc. = Λ ·
√

1 − M2 . . . Eq. (4-68b) (71a)

2
1

tan ψinc.
=

1

tan ψ
·
√

1 − M2 . . . Eq. (4-68c) (71b)

3

(
d cL
d α

)
ψ=0◦

=
π Λinc.√

Λ2
inc./4 + 1 + 1

. . . Eq. (3-98) (71c)

4

(
d cL
d α

)
ψ=ψinc.

=

(
d cL
d α

)
ψ=0◦

· cos ψinc. . . . Eq. (3-123) (71d)

5
d cL
d α

=
1√

1 − M2
·
(
d cL
d α

)
ψ=ψinc.

. . . p. 264, Table 4–4 (71e)

Now, it is possible to apply the similarity rules to three different subsonic commercial transport aircraft.
Table 9 below lists the inputs needed for the calculation of the lift slope assuming that the chosen cruise
Mach number is 0.85 (these values were obtained from Refs. [9] and [10]).

Table 9: Aspect ratio and sweepback angle of typical subsonic commercial transport aircraft.

Boeing B747–400F Boeing MD11F Airbus A380

Aspect Ratio (Λ) 7.7 7.9 7.5

Sweepback Angle (ψ) 37.5◦ 35.0◦ 33.5◦
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Table 10 below lists the result of the calculation of the lift slope for the three chosen aircraft.

Table 10: Estimates of the lift slope dcL/dα for different aircraft.

Computed Value for M = 0.85 Boeing B747–400F Boeing MD11F Airbus A380

Eq. (71a) =⇒ Λinc. 4.06 4.16 3.95

Eq. (71b) =⇒ ψinc. 55.53◦ 53.04◦ 51.48◦

Eq. (71c) =⇒
(
d cL
d α

)
ψ=0◦

3.91 3.95 3.86

Eq. (71d) =⇒
(
d cL
d α

)
ψ=ψinc.

2.21 2.38 2.41

Eq. (71e) =⇒ d cL
d α

4.20 4.51 4.57

The overall magnitude of the authors’ theoretical lift slope estimates for the three chosen aircraft can be
validated by comparing them with results for similar aircraft that are reported in the literature. For example,
lift slopes of 4.41 and 4.90 are reported in NASA CR–2144 for a Convair CV–880M aircraft that traveled
at a Mach number of 0.86 at 23, 000 and 35, 000 ft (see Ref. [12], p. 198). These values are reasonably
close to the values that are reported in the last row of Table 10 above considering the fact that the authors’
theoretical lift slope estimates do not include the lift contribution from the horizontal tail, fuselage, and jet
engines. The authors decided to simply use the arithmetic mean of the three lift slopes reported in Table 10
as input for the evaluation of the right–hand side of Eq. (70). Then, we get the following average value:

d cL
d α

≈ 4.43 (72)

In addition, it is assumed that the angle measurement error equals ±0.02 degrees. Then, we get:

∆α = ±0.000349 radians ≡ ±0.02◦ (73)

Now, the right–hand side of Eq. (70) can be evaluated. We get the following estimate of the drag
coefficient prediction error as a function of the assumed angle measurement error of ±0.02 degrees:

∆cD ≈ 1

18
· 4.43 · ±0.000349 = ±0.000086 ≈ ±0.0001 ≡ ± one drag count (74)

Finally, the numerical result given in Eq. (74) can be summarized as follows:

An angle measurement error of ≈ 0.02 degrees results in a drag coefficient prediction error
of ≈ 1 count for a subsonic commercial transport aircraft that operates in cruise condition.

30

American Institute of Aeronautics and Astronautics



Appendix 4: Precision Error Estimate for Aerodynamic Coefficients

One of the primary goals of a wind tunnel test is the experimental determination of aerodynamic
coefficients. These dimensionless quantities describe magnitude and sign of aerodynamic loads that act on a
test article. A pre–test estimate of the precision error of an aerodynamic coefficient can easily be obtained
after generalizing the approach that is described in this paper for the drag coefficient.

In principle, an aerodynamic coefficient is a dimensionless description of the magnitude and sign of a
force or moment that acts on the wind tunnel model. The acting force or moment is made dimensionless
after dividing it by the dynamic pressure and a reference parameter. This definition can be written as follows

DEFINITION OF AN AERODYNAMIC COEFFICIENT

cξ(ξ,Q) =
ξ

Q ·Aξ
(75a)

where

Aξ ≡
{

A ⇐⇒ if cξ is a force coefficient

A · l ⇐⇒ if cξ is a moment coefficient
(75b)

where ξ represents an aerodynamic force or moment, Q is the dynamic pressure, A is a reference area, and l
is a reference length. The coefficient defined in Eq. (75a) above is a multivariate function of two independent
variables, i.e., ξ and Q, because the reference parameter Aξ is a constant that is only related to the geometry
of the test article. Consequently, the total differential of the coefficient can be described as follows

dcξ =
∂ cξ
∂ ξ

· dξ +
∂ cξ
∂ Q

· dQ =
1

Q ·Aξ
· dξ︸ ︷︷ ︸

Q=const.

+ (−cξ) ·
dQ

Q︸ ︷︷ ︸
ξ=const.

(76a)

where dcξ, dξ, and dQ represent small changes of the related variables. Now, assuming that small random
changes of the tunnel conditions, the model support system orientation, and the electrical outputs of the
balance gages are primarily responsible for the fact that the observed aerodynamic coefficients of two repeat
points differ by a small amount, it is possible to directly relate them to small changes of the independent
variables of the coefficient. Then, an upper bound δcξ of the coefficient’s precision error can be defined by
using the absolute values of the partial derivatives of the coefficient in combination with (i) the absolute
value |δξ| of small random changes of the measured force or moment and (ii) the absolute value |δQ| of small
random changes of the dynamic pressure. Consequently, we get the following “conservative” estimate of the
upper bound of the coefficient’s precision error:

δcξ ≤ 1

Q ·Aξ
· |δξ|︸ ︷︷ ︸

Q=const.

+ |cξ| ·
∣∣∣∣ δQQ

∣∣∣∣︸ ︷︷ ︸
ξ=const.

(76b)

The above estimate of the precision error of an aerodynamic coefficient has two parts that lend them-
selves to interpretation. The first part is a contribution that is related to the balance and support system
characteristics as the precision error |δξ| of the force or moment measurement appears. The second part is
related to the measurement of the tunnel conditions as the relative error |δQ/Q| of the dynamic pressure
measurement appears as multiplier. Therefore, Eq. (76b) can be summarized as follows:
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UPPER BOUND OF PRECISION ERROR OF AN AERODYNAMIC COEFFICIENT

δcξ(δξ, δQ) ≤ δcξ|
Q=const.

+ δcξ|
ξ=const.

(77a)

where

balance and/or support system choice =⇒ δcξ|
Q=const.

≤ 1

Q ·Aξ
· |δξ| (77b)

tunnel condition choice =⇒ δcξ|
ξ=const.

≤ |cξ| ·
∣∣∣∣ δQQ

∣∣∣∣ (77c)

The above interpretation highlights the fact that the precision error δcξ of an aerodynamic coefficient,
similar to the coefficient itself, can be expressed as a function of two independent variables. They are the
precision error |δξ| of the measurement of the aerodynamic load and the precision error |δQ| of the dynamic
pressure measurement.

The input variables needed for the calculation of the precision error of an aerodynamic coefficient can
be split into two groups. The first group consists of two variables that are related to the dynamic pressure
that the test article experiences. They are the dynamic pressure Q and the estimate |δQ| of the precision
error of the dynamic pressure measurement. The second group consist of three variables that are related to
the force or moment measurement and the geometry of the test article. They are the aerodynamic coefficient
cξ, the test article’s reference parameter Aξ, and the estimate |δξ| of precision error of the force or moment
measurement. It is possible to directly identify the three variables of the second group for different strain–
gage balance load formats that are used in the aerospace testing community. For example, the following
inputs are identified for the lift, drag, and pitching moment coefficient if it is assumed that the balance
describes loads in direct–read format:

Table 11: Inputs for the precision error calculation for a direct–read balance.

cξ ξ Aξ |δξ| ≡ Precision Error of Aerodynamic Force or Moment

cL L A |δξ| = |δAF |† · sin |α| + |δNF |† · cos |α|

cD D A |δξ| = |δAF |† · cos |α| + |δNF |† · sin |α|

cM P A · d |δξ| = |δPM |†

†|δAF |, |δNF |, |δPM | ≡ |δFi| ⇐⇒ |δFi| = |ϕ| · S(Fi, R1, . . . , Rn) ; see also Eq. (13b), (13c).

It is important to point out that the precision error estimate |δα| of the angle measurement associated
with the lift and drag coefficient is implicitly contained in the precision error estimates |δAF | and |δNF | of
the related balance load measurements (see explanations associated with the introduction of Eqs. (13b) to
(16b) for more detail). In addition, it is assumed that the precision errors |δAF |, |δNF |, and |δPM | of the
balance load measurements can be described as the product of an observed random error |ϕ| ≈ 1 [µV/V ]
of the bridge output measurements with an estimate S(Fi, R1, . . . , Rn) of the upper bound of the partial
derivatives of the force or moment with respect to all bridge outputs (see Eq. (13b) and (13c)).

Table 12 below shows the inputs for the lift, drag, and pitching moment coefficient of a balance that
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describes loads in force balance format. The required total normal force is obtained after transforming the
forward and aft normal force components from force balance to direct–read format (see, e.g., Ref. [5] for
a derivation of the load transformations for a force balance). It is important to point out that the “+”
operator and absolute values of all load components must be used for the definition of the precision errors
because the sign of the different precision error contributions is unknown.

Table 12: Inputs for the precision error calculation for a force balance.†

cξ ξ Aξ |δξ| ≡ Precision Error of Aerodynamic Force or Moment

cL L A |δξ| = |δAF |‡ · sin |α| + {|δN1|‡ + |δN2|‡} · cos |α|

cD D A |δξ| = |δAF |‡ · cos |α| + {|δN1|‡ + |δN2|‡} · sin |α|

cM P A · d |δξ| = {|δN1|‡ + |δN2|‡} · (b/2)

†It is assumed that the balance moment center is halfway between the forward and aft gages.
‡|δAF |, |δN1|, |δN2| ≡ |δFi| ⇐⇒ |δFi| = |ϕ| · S(Fi, R1, . . . , Rn) ; see Eq. (13b), (13c).

Table 13 below shows the inputs for the lift, drag, and pitching moment coefficient of a balance that
describes loads in moment balance format. The required total normal force is obtained after transforming
the forward and aft pitching moment components from moment balance to direct–read format (see, e.g.,
Ref. [5] for a derivation of the load transformations for a moment balance). Again, as it was the case for a
force balance, the “+” operator and absolute values of all load components must be used for the definition
of the precision errors because the sign of the different precision error contributions is unknown.

Table 13: Inputs for the precision error calculation for a moment balance.†

cξ ξ Aξ |δξ| ≡ Precision Error of Aerodynamic Force or Moment

cL L A |δξ| = |δAF |‡ · sin |α| +
|δPM1|‡ + |δPM2|‡

b
· cos |α|

cD D A |δξ| = |δAF |‡ · cos |α| +
|δPM1|‡ + |δPM2|‡

b
· sin |α|

cM P A · d |δξ| =
|δPM1|‡ + |δPM2|‡

2

†It is assumed that the balance moment center is halfway between the forward and aft gages.
‡|δAF |, |δPM1|, |δPM2| ≡ |δFi| ⇐⇒ |δFi| = |ϕ| · S(Fi, R1, . . . , Rn) ; see Eq. (13b), (13c).

Precision error estimates for other aerodynamic coefficients (side force coefficient, rolling moment coef-
ficient, yawing moment coefficient) can be obtained by following the general approach that is outlined above
for the lift, drag, and pitching moment coefficients.
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